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Abstract

Mapping and navigation have gone hand-in-hand since long before robots existed. Maps are
a key form of communication, allowing someone who has never been somewhere to nonethe-
less navigate that area successfully. In the context of multi-robot systems, the maps and
information that flow between robots are necessary for effective collaboration, whether those
robots are operating concurrently, sequentially, or completely asynchronously. In this pa-
per, we argue that maps must go beyond encoding purely geometric or visual information to
enable increasingly complex autonomy, particularly between robots. We propose a frame-
work for multi-robot autonomy, focusing in particular on air and ground robots operating
in outdoor 2.5D environments. We show that semantic maps can enable the specification,
planning, and execution of complex collaborative missions, including localization in GPS-
denied settings. A distinguishing characteristic of this work is that we strongly emphasize
field experiments and testing, and by doing so demonstrate that these ideas can work at scale
in the real world. We also perform extensive simulation experiments to validate our ideas
at even larger scales. We believe these experiments and the experimental results constitute
a significant step forward toward advancing the state-of-the-art of large-scale, collabora-
tive multi-robot systems operating with real communication, navigation, and perception
constraints.

1 Introduction

Multi-robot heterogeneous systems provide benefits in a wide range of tasks (Rizk et al., 2019). Consider
one such task: exploratory mapping, where a robot team is tasked with mapping objects of interest within
some user-defined region. Such a use case arises in domains ranging from agriculture (Ribeiro and Conesa-
Muñoz, 2021; Chen et al., 2020) to search-and-rescue (Lindqvist et al., 2022), to radiation mapping (Gabrlik
et al., 2021). Employing robots with diverse sensing and mobility characteristics often leads to a team that
is more capable, flexible, and efficient. However, to efficiently utilize these robots, we must find a suitable
representation for data communicated between robots.

It is first worth distinguishing between representations internal to a robot and those shared between robots.
A robot may have some set of environment representations that it uses internally, but we do not require that
robots exchange that information verbatim. Robots only share some subset of their state, not the entirety.
We call the representation used by the robot that built it internal, and the information communicated to
other robots the shared representation.

This leads us to the following list of properties for our shared representation:
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• Sufficiency: Given a suitable task-performance function, we want to minimize the penalty for
communicating the shared representation as opposed to the full internal one.

• Efficiency: We want to minimize the resources needed for communication, such as time, power,
and bandwidth.

• Commonality: The shared representation should be usable by all robots, even those with diverse
sensing and mobility. That is, it should be invariant to variations in each robot platform.

• Interpretability: The representation should be understandable not only by robots, but also by
human operators.

To help build intuition, and in light of our desired property of interpretability, it is helpful to consider how
humans approach this problem. We typically communicate not in terms of geometry, but rather in terms
of objects and their meaning for a particular task. For instance, we might communicate a room layout by
describing what wall or corner a piece of furniture should be against, not in terms of cartesian coordinates
or a full 3D model of the space. Because this information is encoded in terms of human language, we refer
to it as semantics.

We argue that human language is not simply convenient, but actually reflects more fundamental properties
of the environment. Semantics naturally represent properties that are invariant under a wide variety of
transformations. A chair remains a chair under translation, rotation, scaling, color shifting, sensing, et
cetera. Its “chair-ness” is an intrinsic property not dependent on any external factor. This invariance is
captured by our properties of commonality and interpretability, and even sufficiency and efficiency since
encoding only invariant properties throws out extraneous information that may not be useful to other agents
and expensive to share.

Thus far, we have taken a very general definition of semantics. However, in practice, most works have encoded
semantics into an environment by labeling geometry or objects with some set of semantic labels, or possibly a
probability distribution over some set (Garg et al., 2020). The choice of this set of labels is highly dependent
on the tasks a robot is intended to complete, and has the benefit of being human-interpretable by definition.
For instance, classes such as graspable or slippery might be relevant to a robotic manipulator, classes
such as coffee mug or towel relevant to a home assistant robot, and classes such as road or pedestrian
relevant to an autonomous vehicle. In recent years, deep learning methods for rapidly and accurately labeling
images and even point clouds based on training data have become widely adopted. We therefore leverage
these methods throughout this work and adopt a set of classes for this work that are distinctive, detectable
from the air and ground through cameras or LiDAR, and relevant for traversability, thereby ensuring that
we meet all the requirements for our representation.

In this paper, we present an integrated system for air-ground robotic collaboration built on top of semantic
maps. Like our prior work (Miller et al., 2022), we adopt the architecture of an aerial robot with multiple
ground robots consuming the aerial data. We select this architecture because it allows us to leverage the
unique capabilities of aerial and ground robots. Aerial robots can fly at high altitude to view large portions
of the environment, as well as explore more rapidly and with less concern for obstacles. In addition, due to
their altitude, aerial vehicles can often have line-of-sight to multiple ground robots, thereby naturally being
an effective communication relay. Because of these properties, our architecture is designed to primarily
exploit an aerial robot as an initial explorer and communication relay, and ground robots for more close-up
investigation.

A distinguishing characteristic of our work is our emphasis on semantics at every level of autonomy. We
adopt a cross-view localization system built on semantics from our prior work (Miller et al., 2021), but
also employ semantics for ground robot global planning. Secondly, we heavily employ integrated depth
panoramas constructed by our LiDAR odometry algorithm, LLOL (Qu et al., 2022). These panoramas are
semantically segmented and used for localization, and are also used directly for local terrain assessment and



local planning. By building our approach around semantics, depth panoramas, and aerial maps, we simplify
our overall autonomy stack around these core representations, all of which are compact and efficient to use.

We devote a large portion of this paper to the experimental verification and validation of our approach.
While our primary contribution of this work is an autonomy framework which can be the foundation for a
variety of tasks, we here focus on a particular scenario to experimentally study and characterize the system.
In this scenario, the overall objective of the team is to visit all clusters of cars in a predefined region with
at least one ground robot. We adopt this particular mission because it is motivated by real-world search
and rescue applications and it leverages ground and aerial robots. It is also straightforward to compute
informative performance metrics for this task, such as the number of clusters successfully visited and the
time taken to do so. However, we note that this scenario is not our goal in itself, rather, we seek to construct
a more general autonomy framework with it as a motivating example.

Our contributions are as follows:

• An integrated system for multi-robot collaboration, the code of which we open source (https:
//github.com/KumarRobotics/spomp-system). A video demonstrating SPOMP in operation is
available there as well.

• An efficient depth panorama-based local planner for ground robots, along with a mechanism for
learning and sharing compact traversability information between ground robots while incorporating
aerial context.

• Experiments in simulation and the real world demonstrating active autonomous collaboration be-
tween aerial and ground robots based on a single high-level mission specification.

2 Background

2.1 Ground Robot Terrain Analysis and Planning

Motion planning approaches can be broadly categorized into classical approaches and learning-based ap-
proaches (Dong et al., 2023). Most classical approaches begin with some form of geometric map represen-
tation. This representation can take the form of a digital elevation map (DEM), voxel grid, or pointcloud,
and approaches can be purely geometric or appearance-based (Borges et al., 2022).

Early works typically used a LiDAR for sensing and constructed an elevation map from the sensor pointcloud.
They then estimated traversability using a metric computed on that terrain (Howard and Seraji, 2000; Larson
et al., 2011). Some more recent methods, recognizing the inherent polar nature of 3D LiDAR, instead directly
compute traversability on the points of an organized sweep (Reddy and Pal, 2016). This approach takes
advantage of the adjacency of points in an organized point cloud. However, approaches that operate on these
point-based representations ultimately bin these points into a grid, either cartesian (Neuhaus et al., 2009)
or polar (Martínez et al., 2020), for planning purposes.

While geometric algorithms are straightforward and work well in many environments, not all obstacles are
characterized by geometry alone. For instance, tall grass may look like an obstacle but be easily driven
over, and muddy or sandy regions may appear smooth but be treacherous nonetheless. 3D LiDARs are also
expensive and complex compared to cameras. To address these challenges, many have proposed vision-based
classification systems (Sevastopoulos and Konstantopoulos, 2022). One early use of vision leveraged LiDAR
to compute a traversable region, and then used vision to extrapolate that region to parts of an image with
a similar appearance (Thrun et al., 2006). More recent approaches use supervised learning in conjunction
with convolutional neural networks to directly classify images (Hosseinpoor et al., 2021). Some authors have
recognized the complementary benefits of geometric LiDAR and learning-based image classification and
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proposed methods for fusing the two in a hybrid system (Zhou et al., 2022) or directly learning traversability
from LiDAR (Shaban et al., 2022) on the basis of human labels. Schilling et al. (2017) follow the idea of
fusing LiDAR and vision, but also employ a semantic segmentation network as a pre-processing step for the
image data. Semantic class, therefore, can be a useful input to the traversability model, an idea which we
employ in this work.

Supervised learning-based methods typically rely on human labels of traversability. This human labelling is
time consuming as well as non-transferable between different robots which may have very different mobility
constraints. As a result, many works have sought to develop methods for self-supervision of traversability
prediction models, where the labels are provided by a robot’s own experience. In an early work (Stavens and
Thrun, 2006), a ground robot statistically learns the roughness of terrains based on its interoceptive sensing.
Another method (Ho et al., 2013) learns a kernel function to predict what a robot’s configuration would be
on a given region of terrain. Prágr et al. (2019) learn a heatmap of traversability on top of a satellite image
on the basis of experienced data. More recently, methods have been proposed to learn traversability based
on data from teleoperating the robot using a deep neural network (Wellhausen et al., 2019). End-to-end
approaches have also been proposed, such as ViKiNG (Shah and Levine, 2022), which does not explicitly
model traversability on a per-pixel or per-voxel basis, but rather directly determines the best plan based on
imagery. ViKiNG additionally constructs a topological graph as it explores to aid in global planning. This
approach builds on the work of other authors that have sought to build roadmaps on top of occupancy grid
maps (Park et al., 2012). These traversability graphs are much sparser than a dense grid map, enabling
more rapid planning, and our approach takes advantage of this.

A logical next step for self-supervised learning-based methods is to not only build a training dataset from
a robot’s experience, but to train the robot online during its experiences. These methods can use Bayesian
clustering (Lee et al., 2017) or a Multi-layer Perceptron (MLP) (Frey et al., 2023) to rapidly train online
on the basis of experienced data. Both approaches perform image segmentation into superpixels (Lee et al.,
2017) or learned segments (Frey et al., 2023) as a preprocessing step. Our approach follows this idea on
online learning with an MLP, but for the purpose of extrapolating classical geometric terrain analysis to
areas that only have aerial UAV imagery.

In our work, we draw inspiration from approaches that operate directly on organized LiDAR sweeps. How-
ever, we avoid binning into grid cells and instead plan directly in this space. In addition, we incorporate
ideas from learning and traversability graphs in order to use semantically labeled aerial maps to extrapo-
late local terrain experience across the global map. We perform this fitting and extrapolation process in
real-time, feeding it back into our planner for constant refinement. Unlike these works, we also incorporate
information from other robots as part of the online estimation and develop a compact representation which
can be efficiently shared between robots.

2.2 Air-Ground Teaming

It has long been recognized that heterogeneous teams of air and ground robots can achieve better performance
than either robot individually. Several authors have developed a taxonomy for different roles that Unmanned
Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) can assume in a team, including acting as
a sensor, actuator, or playing an auxiliary role (Ding et al., 2021; Liu et al., 2022a).

Some of the most recent large-scale work on air/ground collaboration has come from the DARPA SubT
Challenge (Chung et al., 2023; Tranzatto et al., 2022; Morrell et al., 2022; Hudson et al., 2022). These teams
all utilized heterogeneous robot teams to locate various objects in diverse underground environments in a
task similar to ours. Nonetheless, the challenges and constraints of underground operation are very different
from those on the surface; the domain we focus on here. In particular, the advantage of a quadrotor as an
eye-in-the-sky is reduced in favor of its utility in visiting difficult to reach areas. There is no way to obtain
a high-altitude view of a tunnel system, but we argue that if possible for a given environment, doing so is
highly valuable. In our work, we employ the UAV as both a sensor for gathering an aerial map as well as an



active communication relay. We here discuss prior work addressing both of these roles.

2.2.1 UAV for Mapping

Some authors have used UAVs and UGVs in cooperative mapping in relatively homogenous ways (Yue et al.,
2020; Scherer et al., 2021). In these works, the UAVs fly at a relatively low altitude and use similar sensing to
UGVs. Map representations, sensing, and viewpoints are all similar, making map fusion primarily between
homogeneous maps. However, the heterogeneity of mobility of both types of robots can be used to reach
different parts of the environment.

By contrast, many authors have recognized the particular strengths of UAVs in high-altitude flight, gaining
a perspective with a speed that a UGV cannot compete with. One approach (Vandapel et al., 2006) takes
LiDAR maps built from a crewed helicopter and uses them for localizing a UGV equipped with LiDAR, as
well as for planning its global trajectories. Other approaches have replaced the expensive and heavy LiDAR
sensor on the aerial platform with a vision-equipped UAV. Some of these approaches operate at relatively
small scales. In one work (Su et al., 2021), a UAV identifies targets for a UGV to track. However, the UGV
planning and localization operates completely independently of the UAV, rather than using the UAV only
to identify goals. Fankhauser et al. (2016) similarly operate at a small scale, but perform localization and
mapping cooperatively on both robots. However, the quadrotor flies low enough that image features can be
directly registered between robots, and the resulting elevation map is high enough resolution for planning
on it directly.

Other works perform experiments at larger scales. A major early work (Grocholsky et al., 2006) employ
a team of fixed-wing UAVs and UGVs to localize targets, but use GPS for localization. Obstacles are not
considered. More recently, Lazna et al. (2018) use UAV data for UGV planning, but construction of the
aerial map is a computationally demanding procedure that must be run offline. Peterson et al. (2018) build
an orthomap online which they use to localize obstacles for the UGV to avoid, but communication is always
assumed to be available.

Our work operates completely online and does not require constant communication. In addition, we employ
the aerial map for planning and localization, but do not specify traversability a priori, and rather allow
UGVs to learn to generalize their experience using this map. We also focus on large-scale experiments, both
in terms of area covered as well as team size.

2.2.2 UAV for Communication

UAVs also have properties highly conducive to facilitating communication (Li et al., 2021). They can operate
at high altitude where line-of-sight to multiple UGVs is feasible, and can also travel more quickly without
needing to worry about obstacle avoidance. Nonetheless, algorithms are needed to determine where UAVs
should go to maximize team communication and performance.

Some authors formulate this as the relay placement problem. In a simple form, this problem can be expressed
as follows: given a number of agents in the environment, select where to place relay nodes to keep the network
fully connected (Mox et al., 2022). Other authors have generalized the problem further, such as having a
number of set task points and robot points that a single UAV is tasked with visiting (Ding et al., 2019).
This then turns into a variant of the Travelling Salesman Problem (TSP).

However, both of these authors assume that the positions of the task and/or robot points are always known.
If communication is not constant, this is not a realistic assumption. Some methods have sought to address
this problem. In one approach (Chamseddine et al., 2016), the UAV uses the bearing and signal strength
from different UGVs to try to optimize its position. In another work (Wu et al., 2020), the UAV explicitly
tries to estimate the UGV positions using a filter-based approach. Nonetheless, both of these methods rely on
some form of detection of ground robots, and if communication is lost completely may struggle to determine



where to go to regain a connection.

In our work, we do not assume or try to always maintain connectivity. Rather, we seek to balance the UAV’s
time between exploring new regions and acting as a relay for UGVs. To keep track of UGV locations, the
UGVs communicate their current position and current goal and the UAV uses this last-known information
to try to revisit robots. Our approach therefore makes no assumptions about the communication model,
connectivity graph, or current knowledge of robot positions, and we argue that this makes it particularly
robust in real-world deployments.

2.3 Authors’ Prior Work

In this work, we employ a similar high-level design to our prior work (Miller et al., 2022). This includes
a modified version of the localizer from our works (Miller et al., 2021, 2022), the communication system
from (Miller et al., 2022, 2020; Cladera et al., 2023), the aerial mapper from (Miller et al., 2021), and
the aerial planner from (Cladera et al., 2023). Here, we focus on our new approaches for UGV terrain
mapping, navigation, and learning from the aerial map, though we provide summaries of modules previously
described in other works. Nevertheless, our emphasis in this paper is on the integrated air/ground system,
and not purely on the terrain analysis component. Our experiments are much more extensive than our prior
work, incorporating 3 robots across two real-world diverse and challenging environments, totalling 17.3 km
autonomously travelled by the UGVs. We additionally perform many ablation and scaling experiments in
simulation to further validate our approach.

3 Method

A simplified overall block diagram of our system, SPOMP (Semantic Panoramic Online Mapping and Plan-
ning), is shown in Fig. 1. The aerial robot is responsible for building a semantically segmented orthomap of
the target region. As this map is being constructed, updated maps are transmitted to ground robots when
they happen to be in communication range using our communication framework and distributed database
MOCHA (Cladera et al., 2023). Ground robots use this semantic aerial map to localize using the cross-view
localization algorithm described in our prior works (Miller et al., 2021, 2022). Robots opportunistically share
data with each other using MOCHA when they are able to. All robots know their own poses in a common
coordinate frame, and ground robots are in possession of the aerial orthomap. However, for the system to be
autonomous, we additionally need algorithms for the ground and aerial robots to make decisions about where
they can and should travel, both locally and globally. In Section 3.1 we first discuss the aerial autonomy
stack, beginning with the aerial mapper ASOOM in Sec. 3.1.1 and moving to the aerial planner in Sec. 3.1.2.
We then move to the ground autonomy stack in Section 3.2, beginning by describing the high level mission
manager and goal selector (Section 3.2.1) and moving to the LiDAR odometry, segmentation (Section 3.2.2),
and cross-view localization algorithms (Section 3.2.3) that provide a common reference frame to the robots.
We conclude with the UGV local and global planners responsible for planning to the selected goals while
remaining safe (Sections 3.2.4 and 3.2.5, respectively).

3.1 Aerial Autonomy

3.1.1 Aerial Mapper

We employ the same Aerial Semantic Online Ortho-Mapping (ASOOM) algorithm first presented in our
prior work (Miller et al., 2022). ASOOM uses odometry from ORBSLAM3 (Campos et al., 2021) and GPS
position in order to construct a semantic orthomap. This is the only use of GPS in our system. The
orthomap includes several layers, including RGB color, semantic class from ErfNet (Romera et al., 2017),
and elevation. Each layer is png compressed before being transmitted to other robots, resulting in the map
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Figure 1: The SPOMP architecture described in terms of ROS nodes. Sensors and actuators are shown in
orange and visualization outputs in green.

size being reduced by about a factor of 10.

3.1.2 Aerial Planner

Our aerial planner is addressed in more detail in our prior work (Cladera et al., 2023), but we provide a brief
overview here. To exploit the UAV strengths of viewpoint and speed, we assign it two goals:

1. Explore the environment to build a semantic orthomap for UGV navigation.

2. Facilitate communication both to transmit the orthomap to UGVs as well as relay data between
ground agents.

These goals may be contradictory: if the UAV is only exploring, it will be in new regions that the UGVs
have never been, and therefore never have the opportunity to send them the aerial orthomap. By contrast,
if the UAV is only facilitating communication, it will stay with the UGVs and never explore new regions. In
either scenario, the team is ineffective.

The simplified state machine for the aerial planner is shown in Fig. 2. We employ a time-sharing system,
where the UAV alternates between tasks, assigning a fixed amount of time to each. In exploration mode, the
robot follows a preset collection of waypoints. When the timer expires, the UAV seeks out a UGV on the
basis of its knowledge of the UGV’s last known location and goal. The target UGV is selected in round-robin
fashion. If more recent information is received en route, the UAV adjusts accordingly. Once either all data in
the distributed communication system has been synchronized with the target UGV, or the UAV times out, it
returns back to its last exploration waypoint, restarts the timer, and resumes exploration. Once exploration
has completed, the UAV simply spends all its time flying between the UGVs sequentially.
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Figure 2: Simplified state machine determining the UAV high level goal.

3.2 Ground Autonomy

3.2.1 High-Level Coordination

The UGVs coordinate at the level of goal locations g ∈ R2. These goal locations can either be manually
specified by an operator or selected automatically from the aerial map. If manually specified, the goals are
added to MOCHA (Cladera et al., 2023) and then distributed by MOCHA through the mesh network to
all of the robots. If automatically detecting goals, each robot identifies clusters of the target class (vehicles
in our experiments) in the aerial semantic map, and shares the goals that it has identified via MOCHA.
Clusters are identified by performing a morphological close followed by a morphological open operation on
the binary class mask in order to remove noise and combine groups of vehicles. We then select the goal to
be the point furthest from an obstacle within a threshold distance of a cluster in order to avoid placing goals
inside buildings or other unreachable areas.

Robots also share each goal’s status: whether a goal is claimed, visited, or only identified. A claimed goal
is a goal that a robot is currently en route to, but has not yet visited. Goals from other robots that are
within a threshold distance (10 meters in our case) of a robot’s goal are considered to be the same goal for
the purposes of deconfliction. The goal detection procedure is intentionally done on each robot in order to
make the system entirely distributed, though goals can be provided from a central source if desired.

We consider a mission to be completed when all goal locations have been visited by at least one UGV. A
given UGV will always select the closest goal in cartesian distance from itself that is not already claimed by
another robot. We implement a priority mechanism to disambiguate goals, with priorities pre-assigned at
mission start: if a robot learns that another robot is going to the same goal, it will switch to a new goal if
the other robot has a higher priority. If a UGV is unable to find a path to a goal, or exceeds a time limit
while trying to get there, it will mark the goal as unreachable and release it for other agents to attempt to
reach. This procedure is described as a state machine in Fig. 3.

3.2.2 Ground Odometry and Semantic Segmentation

The basis for the ground odometry stack is a modified1 version of LLOL (Low-Latency Odometry for spinning
LiDARs) (Qu et al., 2022). LLOL takes as input the raw LiDAR sweeps and IMU and outputs per-sweep
odometry as well as integrated depth and intensity panoramas approximately every meter that the robot
moves. These panoramas can be thought of as virtual super-resolution LiDAR sweeps.

We then segment these sweeps using RangeNet++ (Milioto et al., 2019), also incorporating intensity as an

1The source code for this modified version can be found here: https://github.com/versatran01/rofl-beta
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Figure 3: State machine describing the algorithm for assigning goals to ground vehicles.
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Figure 4: The Semantic Integrated LiDAR Labelling (SILL) tool and output labelled depth panoramas.

input. The classes we use are shown in Fig. 4. The Person class is ignored by all downstream processing.
We make several modifications to the network. We first shrink the network size using the same modified
structure as Liu et al. (2023). Secondly, we replace the normalized x, y, and z coordinates with x, y, and
z components of the surface normal at that point. We also upweight the loss with range to encourage the
network to more accurately classify more distant and sparse points.

In order to generate training data, we developed a custom labeling tool, SILL (Semantic Integrated LiDAR
Labelling)2. The SILL interface and output labeled panoramas are shown in Fig. 4. SILL operates by first
using LLOL to integrate panoramas into a large pointcloud. This pointcloud is then downsampled by voxel
filtering. The key idea of SILL is to label from a top-down perspective, slicing at varying points on the z
axis. Consider the example of labeling an outdoor scene. The user first selects a z value just above ground
level, causing SILL to only display points at or below the ground. The user can therefore focus on labeling
just the various types of ground before increasing the z threshold, at which point they can easily label above-
ground objects. This is because points which have already been labeled at lower z are frozen and will not be
overwritten by the new classes, making it easy to label overhanging vegetation without changing the class
of the road beneath. Using SILL, we were able to rapidly label training data from our test environments.

2Source: https://github.com/iandouglas96/sill
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Figure 5: Visualization of the panorama after each processing step, and the final projected obstacle point
cloud.

3.2.3 Cross-View Localizer

The primary modification made to the localizer (Miller et al., 2022) was to operate on integrated semantic
panoramas instead of each LiDAR sweep. This significantly reduces the computational load, because even
though the higher resolution panoramas take longer to segment, they are generated far less frequently than
the 10 Hz LiDAR sweeps. Additionally, downstream processes such as localization run less often. Because
new panoramas are generated less frequently and higher frequency pose estimates are needed for planning
and control, we rely on the LLOL odometry in between panoramas.

3.2.4 Local Ground Planner

A key design decision that we made was to use depth panoramas as much as possible for planning. While it
is traditional to construct an occupancy grid or elevation map and plan on that representation (Papadakis,
2013), by directly planning in panorama space we are able to optimize the local planner by parallelizing
operations on a per-row basis, increasing computation speed. When parallelized, the entire terrain analysis
pipeline takes approximately 3.5 ms per-panorama on an AMD Ryzen 3900X. The nature of 3D spinning
LiDARs inherently results in higher resolution data close to the robot and coarser data further away, which
is convenient due to regions near the robot being more important for planning. We therefore avoid the loss
of data, particularly near the robot, that would result from binning points into a cartesian grid.

Let p = (pe, pa) be a pixel coordinate on the panorama, where pa and pe are the coordinates in the azimuthal
and elevation directions respectively. Then ρ(p) = ρ(pe, pa), θ(p), and ϕ(p) are the range, elevation, and
azimuth at that point respectively, and x(p), y(p), and z(p) the cartesian coordinates. We also let r(p) =√
x2(p) + y2(p), and let the panorama have dimension E ×A. Finally, we assume that there is noise in the

depths of the panorama of order η. We decompose this into ηz(p) = η sin(θ(p)) and ηxy(p) = η cos(θ(p)), the
components perpendicular to and parallel to the xy plane.

Terrain analysis consists of a number of steps operating on each panorama. We consider each step in more
detail here, and the process is illustrated in Fig. 5.



Fill holes and project: The depth panorama is typically of higher resolution than the raw LiDAR data,
and so therefore there are often holes in the panorama with unknown depth. We therefore loop through each
row in the panorama and fill holes below a certain threshold Dpx in size with linearly interpolated depths.
This threshold is scaled with the range of the points in question such that it can be approximately specified
in meters Dm. More formally, at a point p we have the arc length between adjacent points in the panorama

s(p) = (2π/A) ∗ ρ(p). (1)

Then we have
Dpx(p) = Dm/s(p). (2)

Once this has been completed, we compute the per-pixel cartesian projection of the depths, needed for the
later gradient computation. Both operations can be done in parallel.

Compute and threshold gradients: We now compute the gradients on a per-pixel basis. To make this
operation more efficient, we take advantage of the known adjacency in the panorama structure and compute
the gradient along the azimuthal and elevation directions. This is an approximation, because there is no
guarantee that the vectors from the current point to the neighboring points in the panorama are in fact
perpendicular, but it is a reasonable assumption on an approximately planar surface. To minimize noise, we
want to compute the gradient using a window of approximately W meters in size. Due to the polar nature
of the coordinate system, the corresponding window size in pixels varies depending on its position in the
panorama. We therefore first compute the window sizes wa and we for the azimuthal and elevation directions

wa(p) = min{W/sxy(p),Wmax}/2 + 1

we(p) = min

{
δ ∈ N

∣∣∣∣hs ∗
∣∣∣∣ 1

tan θ(p)
− 1

tan θ(pe − δ, pa)

∣∣∣∣ ≥W

} (3)

where sxy is the arc length on the x−y plane, in other words sxy(p) = (2π/A)r(p) and hs is the approximate
height of the LiDAR above the ground when the robot is on a flat surface. wa is computed using the known
range at p to estimate the arc length, and we is computed by assuming that the robot is on a flat surface
and determining the closest distance at which successive rows of the panorama are separated by at least W .

With these in hand, we are now ready to compute the gradients:

∇a(p) =
max{|z(pe, pa − wa(p))− z(pe, pa + wa(p))| − ηz(p), 0}

s(p) ∗ (wa(p) ∗ 2 + 1)

∇e(p) =
max{|z(p)− z(pe − we(p), pa)| − ηz(p), 0}
|r(p)− r(pe − we(p), pa)|+ ηxy(p)

(4)

Note that we add and subtract the components of η in order to yield the minimum gradient that could
be present if the noise is of magnitude η. Finally, the total gradient magnitude is given by |∇(p)| =√
∇2

a(p) +∇2
e(p). We threshold the panorama at a particular gradient magnitude ∇thresh to form a binary

image.

Compute per-point closest distance to obstacle: At this point, we have a per-pixel panorama and
point cloud labeled as obstacle or not. We then need to inflate the obstacles for planning purposes. Since
our design goal is to avoid any sort of grid projection, we now want to efficiently compute the distance for
each point to the nearest obstacle point. We do this with successive sweeps along the altitude and then the
azimuth of the panorama. The algorithm is formally described in Alg. 1.

We first iterate down each column, keeping track of the last time an obstacle was encountered and the
distance to it. Note that we only care about the distance to an obstacle coming from the robot’s direction,
so therefore we only need to make this one column pass. We then make two passes along each row in both
directions, again adding up the distances from the last closest obstacle. Note that this addition overestimates



Algorithm 1 Distance Transform Approximation
Input: Depth panorama ρ(p), Obstacle panorama O(p) ∈ {true, false}
Output: Distance transformed obstacle panorama D(p) ∈ [0, Dmax]

1: D ← Dmax∀p
2: Da ← Dmax∀p
3: for pa ∈ {1, . . . , A} do
4: Dobs ←∞
5: for pe ∈ {1, . . . , E} do
6: if O(pe, pa) then
7: Da(pe, pa) = 0
8: Dobs ← min{ρ(pe, pa), Dobs}
9: else

10: Da(pe, pa)← min{|ρ(pe, pa)−Dobs|, Da(pe, pa)}
11: end if
12: end for
13: end for

14: function UpdateAz(pe, pa, plasta )
15: Dobs ← Da(pe, p

last
a ) + |pa − plasta | ∗ s(pe, plasta )

16: if Dobs > Da(pe, pa) then
17: plasta ← pa
18: D(pe, pa)← min{Da(pe, pa), D(pe, pa)}
19: else
20: D(pe, pa)← min{Dobs, D(pe, pa)}
21: end if
22: end function

23: for pe ∈ {1, . . . , E} do
24: plasta ← 1
25: for pa ∈ {1, . . . , A} do
26: UpdateAz(pe, pa, plasta )
27: end for
28: plasta ← A
29: for pa ∈ {A, . . . , 1} do
30: UpdateAz(pe, pa, plasta )
31: end for
32: end for



the actual distance to the obstacle, but in practice, this algorithm yields a good enough approximation and
is very fast.

As a final step, we compute what we call the reachability scan and denote S(ϕ) ∈ R+ × {true, false}. For
each ϕ, S gives us the known safe distance that the robot can travel in that direction, and a boolean value
for whether there is a known obstacle at the end of that distance or not. S is computed by scanning up the
specified column of the panorama until either the distance between successive scan rows exceeds a threshold
(no obstacle known) or the distance to an obstacle drops below a threshold (known obstacle). As a result,
we have a known safe region, known unsafe regions, and regions that could be safe or unsafe but we are too
far away to determine.

Controller: Given a global goal G, we must first compute a local goal for the controller. To do this, we
randomly sample uniform points x within the known safe region specified by S. We compute the cost of a
choice of local goal as

C(x) = ∥x−G∥2 + α
∥x× gold∥2
∥gold∥2

(5)

where gold is the last local goal, and α is some constant. We then select the new local goal g = argminxC(x).
A goal that is in the known safe region, close to the global goal, and close to the old last goal will have the
lowest cost. The final term incentivizes the robot to be consistent in its choice of local goal instead of, for
instance, switching back and forth constantly between two possible paths around an obstacle.

For our low-level controller, we take the Dynamic Window Approach (DWA) (Fox et al., 1997). We uniformly
sample the control space of the robot, which for our skid-steer platform is (v, ω) ∈ R2, where v and ω are
the linear and angular velocities, respectively. We perform this sampling around the current control inputs
which naturally imposes a smoothness constraint on the controller. We then roll out that control for a time
window Tw into a trajectory τ(t), t ∈ [0, Tw] and compute a cost C for each trajectory τ :

C(τ) = Cg(τ) + Co(τ)

Cg(τ) = ∥g − τ(Tw)∥2 +
∥g × τ(Tw)∥2
∥g∥2

Co(τ) =
1

Tw

∑
0≤t≤Tw

−D(Φ(τ(t)))

(6)

where Φ is a function that maps from a cartesian coordinate to the indices of a nearby point in the panorama.
When sampling a point on the trajectory, we choose a point that is slightly in front of the actual robot
position. This implicitly incentivizes the robot to turn to face in the direction of the goal. We then act on
this computed control input, and replan when we receive new odometry.

3.2.5 Global Ground Planner

The core of our global planner is a traversability graph. Each edge ei possesses a cost C(ei) = − logP (ei),
where P (ei) is the probability of a robot successfully traversing ei. Therefore, when we solve for the lowest
cost path, we are finding the path with the overall highest probability of successful traversal, assuming that
the probabilities for each edge are independent. We employ a sparse traversability graph for several reasons:

• Sparsity makes graph search very fast, especially for large environments.

• Maintaining a traversability graph allows us to keep track of traversed edges, thereby building a
roadmap of known routes.

• Traversability, we argue, is fundamentally a property of an edge. It encodes not whether a robot
can exist at a point, but rather whether a robot can get from point A to point B.



Figure 6: Visualization of the sequence of graph construction. We begin by building a graph that well-covers
the easiest to traverse class (road), and then extend the graph to additionally cover the next easiest to
traverse, each class at a time.

This notion of constructing a traversability graph on top of a grid map is not new (Park et al., 2012).
However, we combine this graph with a learned traversability model that exists on top of the aerial orthomap,
especially the semantic map. In addition, we allow a robot to update this graph with its own and other
robots’ experienced data. Here we first discuss the construction of the graph, then how it is updated from
the robots’ own experience, and finally our method of learning to extrapolate those experiences using the
aerial map.

Graph Construction: We take a similar approach to graph construction as in our previous work (Miller
et al., 2022). For a given region that we wish to build a graph over, we sample the point that is the farthest
away from the edges of the region. We then raytrace a region around that point, which is considered covered
by the graph, and repeat the sampling process ignoring points within the covered region. This process also
allows us to preserve the already-built graph as the aerial map is expanded, which is important to retain
traversability data encoded in the edges. The choice of region to cover is configurable. We can either cover
the entire known region, or we can consecutively cover regions for each class in a specified order, typically
approximately from most to least traversable, as shown in Fig. 6. The progressive method ensures that we
do have edges in the regions that are traversable while keeping possible path options in case all the roads
are blocked. At the end of this process, we have both a graph and a map of the regions raytraced around
each node. We use this map to rapidly lookup accessible nodes on the graph nearby to any arbitrary point.

Learning Experience Extrapolation: It is broadly experientially true that regions that appear similar
from the air are often similar on the ground. More concretely, a region of the map that is traversable and
looks like a road suggests that other road-like patches of the map are also readily traversable. Some authors
have noticed this and used this observation to fit a traversability model to local observations by a ground
robot (Prágr et al., 2019), in this case using Locally Weighted Projection Regression (LWPR). In a follow-up
work, the authors use a haptic sensor to probe traversability, thereby learning a traversability model online
(Prágr et al., 2023). Taking note of these works, and observing that we already have a large aerial map
available to us, we postulate that the ground robots should be able to extrapolate their local experience to
the broader map, without any a priori information about class traversability. We additionally observe that
there is a strong predictive correlation between semantic class and traversability, as noted in Section 3.2.5.
For this reason, and because we already have access to the aerial map, we employ the semantic classes as one
input into our learned terrain model. We do use an a priori ranking of terrain classes for graph construction,
but we wish to construct a more sophisticated model based on the robots’ own experience.

We model the probability of traversability as T (p) = f(C(p),S(p), h(p)), where p is the cell of the orthomap,
C(p) is the RGB color vector at that point, S(p) is a vector of the distance to the nearest pixel of each



semantic class at that point, and h(p) is the elevation at that point. Note that using the distance to all
classes provides richer information to the model than the class at the point, and also allows the model to
incorporate information in the local region of the point in question without needing to use convolutions.
Therefore, f : R3+NC+1 7→ [0, 1], where NC is the number of semantic classes. We approximate f with
a Multi-Layer Perceptron (MLP). We make this choice because we want to approximate an arbitrary and
nonlinear function, and we need a very small and simple model that can be trained quickly onboard the robots
on the CPU. Our fully-connected MLP has a single hidden layer of size 10 with a sigmoid activation function
and L2 regularization of 0.01, and is trained online using RMSProp (Hinton et al., 2012) as implemented in
mlpack3 with default parameters. We normalize each input channel and perform a softmax on the output
to obtain the final traversability probability.

The primary output of the local terrain analyser is the reachability scan S(ϕ), which is also associated with
a pose. S(ϕ) defines a star-shaped region that is known to be safe as well as the edges of obstacles. Using the
associated pose of S, we can label the traversability map pixels within the safe region as trav and the pixels
just beyond the untraversable boundary not_trav. We assume that obstacles have a width of at least the
size of a pixel of the obstacle map. This assumption does not hold for thin obstacles like fences, but these
obstacles are often not detected from the air, and in practice, we have nonetheless obtained good results.
We therefore now have a set of pixels with labels and feature vectors, and can train our MLP on this data,
predicting traversability probabilities for all pixels on the map. Training is done online on each robot while
it is exploring, and is repeated every 10 seconds. We perform no prior training and retain no data or weights
between experiments, rather, all training data is gathered by the robot during the course of each experiment.

Given a graph edge e = (e1, e2), we now want to compute its cost C(e) for the purposes of graph search.
Recall that C(e) = − logP (e), or the negative log of the probability of traversing the edge. In order to
approximate this, we discretize e by sampling uniformly along the edge at points se,i for i ∈ [0, Nd]. Then

C(e) =
∑
i

− log T (se,i) (7)

Note that C is the sum of negative log-likelihoods, meaning that when we solve for the lowest-cost path,
we are maximizing the probability of traversal under the assumption that the traversabilities of all cells
are independent. This assumption is of course not true, but it does provide some physical intuition for the
planner. In practice, in order to handle pixels with unknown descriptors, we take the sum over the known
points and then divide it by the number of known points, finally multiplying by Nd.

Updating Graph with Experience: As we have observed, S(ϕ) defines a known safe region as well
as known unsafe edges. Given this information and an edge in the traversability graph, we would like
to determine if the edge is traversable (trav), not traversable (not_trav), or we are currently unable to
determine the edge’s traversability (unk_trav). These cases are illustrated in Fig. 7.

Because the known safe region is defined as a star, we can compute a set of line segments between all
the neighboring points. We then check for intersections between this set of line segments and the query
traversability edge. If there are none and the endpoints lie within the safe region, then the edge must lie
entirely in the safe region and therefore be trav. Alternatively, if both edges lie outside the safe region and
there are no intersections, the edge is unk_trav. If the edge has more than one intersection, we also assign
it unk_trav, adopting a wait-and-see approach. If an edge has a single intersection, there are again two
cases. If there is an unknown point in S within ∆ϕ of the crossing, we assign unk_trav, and if not we finally
determine the edge to be not_trav.

If an edge is observed to be traversable, then we can assign it a very high traversability probability, and
if it is not a very low one. We override the estimated traversability from the map to do this. In practice,
observations are noisy, and it is important to not mark an edge as traversable if it is in fact not. In this
case, the robot may get stuck trying to traverse the edge and not realize that it is not possible to do so.

3https://mlpack.org/
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Figure 7: Reachability scan with several overlaid edges in the traversability graph labeled with their
traversability determination. The trav edge is considered traversable, no_trav edge considered not
traversable, and the unk_trav edges considered unknown.

To address this, we require repeated, consistent observations to mark an edge. Once an edge is marked
not_trav and locked, it can never be changed. In addition, it cannot be traversed at all and is therefore
effectively removed from the graph for the purposes of graph search. An edge marked trav can be changed
to not_trav, but it requires even more consistent observations. This procedure is described in more detail
in Fig. 8.

Sharing Experience: Using this framework, we now let robots share the accumulated sets of reachability
scans that each have made. All the robots are in the same coordinate frame due to the cross-view localizer,
so robots can treat scans received by other robots in precisely the same way that they treat their own. Scans
are both incorporated into the map for the traversability model input as well as to directly update the graph.
We do prevent edges from being marked not_trav on the basis of data from other robots. In other words,
the only way an edge can be completely removed from the graph is from a robots’ own observations. This
prevents noisy or incorrect data from other robots from irrevocably affecting other robots’ graphs.

4 Simulation Experiments

We perform a number of experiments in our Unity-based simulator environment shown in Fig. 9. There are
15 clusters of cars in the environment, though in practice on occasion the goal detector will select multiple
goals near one cluster.

For these experiments, we run the entire autonomy stack for all robots, with two main exceptions. Firstly,
semantic segmentation is simulated. ASOOM is running, but just uses the ground truth image segmentation
instead of ERFNet. Secondly, instead of running LLOL, we use ground truth odometry with a small amount
of Gaussian noise added. We additionally simulate the LLOL depth panoramas and their semantically
segmented counterparts every second, which are fed into the downstream autonomy stack. We make these
choices for several reasons:

• Segmentation and odometry are the most computationally expensive portions of the system, so
simulating them allows us to test larger teams.

• Segmentation and LiDAR odometry are very well-studied algorithms, and not the focus of this work.

• High-fidelity sensor simulation for reasonable segmentation and odometry testing is difficult to ob-
tain, and without it, running these algorithms in the loop is not representative of real-world perfor-
mance.



Figure 8: Flowchart showing the assignment of different edge states.
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Figure 9: Simulation environment, with a color aerial image on the left where clusters of vehicles are
highlighted with blue squares. The semantic map constructed by the UAV is on the right.

Figure 10: (Left): Distribution of the time taken to visit goals after mission start. Goals not visited are
assigned a default visit time of 30 minutes for the purposes of visualization. (Right): Distribution of the time
it takes between a given robot claiming and reaching a goal, for those goals which are visited (see Fig. 3)

.

The distributed communication system is also simulated. If two robots come within 50 meters of each other,
they synchronize their last known positions. If they come within 30 meters, they synchronize everything. This
approximates the behavior of the distributed communication system where the highest priority messages may
start syncing first, and after some time or after the link quality improves the full synchronization is completed.
There is a basestation at the starting point, which like the basestation in the real world experiments acts as
a static node for the distributed communication system that all robots synchronize with opportunistically.
All experiments are run for 30 minutes, and we run 10 copies of the same experiment for each configuration.

4.1 Scaling

We first investigate the performance of our system as the number of UGVs is increased. In all of these
experiments, we have a single UAV. In Fig. 10 we visualize the times that goals are visited. Note that as
the number of UGVs increases, the goals are visited earlier, and more goals are visited, suggesting that our
system is able to utilize multiple robots to improve overall performance. Interestingly, increasing the number
of robots also appears to increase the time taken to reach a goal, but this is likely mainly due to the further
goals not being reached with fewer robots, skewing the distribution.

We also analyze how the robots are spending their time. Robots may be either headed to a goal or not. If
they are headed to a goal, they may ultimately visit that goal, or they may time out or be preempted. In



Figure 11: Distributions of the fraction of time robots spend actively navigating to a goal for different team
sizes.

Figure 12: Robots’ productivity on a per-robot basis for a 10-UGV team.

Fig. 11 we visualize the distribution over all robots and experiments. Note that the fraction of time that a
robot spends headed to a goal decreases as the number of robots goes up. This suggests that while adding
more robots helps, there are also diminishing returns because those robots spend less time doing useful work.

We further analyze this phenomenon on a per-robot basis in Fig. 12. Robots are organized in decreasing
priority, and note that robots of lower priority generally visit fewer goals as well as spend less time visiting
goals. This suggests that there simply are not enough goals being fed to all robots to use them all effectively.
Given that there are approximately 15 goals, 10 robots, and the goals are gradually discovered over time,
this is an intuitive result.

All of these experiments are considering only a single UAV. We propose two ways of scaling up the number
of UAVs. In our prior work (Cladera et al., 2023), two UAVs are deployed, where the mission of one
UAV is to perform only communications. This approach may lead to network congestion with most data
travelling through a single node, decreasing the overall performance of the system. We can solve this problem
by running multiple parallel teams, where each team independently explores a different area. This scales
in a perfectly parallel fashion, avoiding network congestion, but we lose any benefits of interaction between
teams beyond simply dividing up the environment. Under this architecture, the relevant scaling metric is the
UAV/UGV ratio, as each UAV is assigned an independent UGV team. However, if inter-team communication
and collaboration are allowed, the system becomes more complex, and we leave this for future work.



Figure 13: For different terrain learning ablations, (Left): Distribution of the time goals are visited from
mission start. Goals not visited are assigned a visit time of 30 minutes for the purposes of visualization.
(Right): Distribution of the time it takes a given robot to reach a goal once that robot has claimed the goal,
for those goals which are visited.

4.2 Learning Traversability

In order to analyze the effectiveness of our terrain analysis and learning system, we perform several ablation
experiments. For these experiments, we use a team size of 5 robots. In one set of tests, we disable the
terrain learning system. Instead, we rank the classes by traversability and assign each edge a number Tcls

corresponding to the most difficult class to traverse. We then weight the edge W = 100Tcls −1+D, where D
is the minimum distance from a point on the edge to the nearest next-highest class. This causes the planner
to find a path entirely on the easiest class, and if that fails to include the next highest class, and so on.

We perform another set of tests where in addition to disabling the learning system, we also disable any
updates of the traversability graph. In other words, the traversability graph is frozen from the beginning,
and there is no global replanning at all. All global paths planned are therefore static.

In Fig. 13 we perform the same analyses as in Fig. 10, but instead with varying terrain learning modes. Note
that removing updates to the graph (that is, disabling global replanning) significantly affects the team’s
performance. It does not have a large effect on the time to visit goals that are eventually reached, but it
does decrease the number of goals that are ultimately visited. For all experiments, we erect several roadblocks
in the environment which are labeled semantically as road. Without global replanning, the robots are unable
to handle these obstacles, because they have no way of adapting their global plan.

Removing the terrain learning system also has an effect. Fig. 14 gives us some clues as to why. The
environment has a number of curbs between the sidewalks and roads. There are ramps that the robots can
use to drive up onto the sidewalk from the roads, but these have the same semantic class as sidewalk. Some
of these areas are highlighted by pink boxes in Fig. 14. Note that the robot experiences ramps in one area
of the map but is able to extrapolate them to a different region. Even though they are the same semantic
class, the model is able to learn cues from the ramp colors. This means that for those goals which are on
the sidewalks, robots are able to find paths up ramps to them much more quickly than without the terrain
learning system.

We additionally analyze the robots’ time as in Fig. 11 in Fig. 15. The effect here is less pronounced, which
is unsurprising. Robots spend about the same amount of time going somewhere, but the full system spends
a larger time going to a goal that they will eventually visit. This is due to the goals being reached instead
of timing out, and correlates with the reduced number of goals that are never visited.



Figure 14: Visualization of the terrain analysis partway through a simulated experiment. The pink boxes
highlight regions where the robots observed ramps up the curb, and areas where these ramp detections were
extrapolated to regions seen only by the UAV.

Figure 15: Distributions of the fraction of time robots spend actively navigating to a goal for different terrain
learning ablations



Distance (km) Time (min)
UGV 1 0.88 20.6
UGV 2 0.30 6.4

Table 1: Two robots’ times to a goal, where UGV 2 is given UGV 1’s experience.

UGV1 Path
UGV2 Path
Start
Goal
Roadblock

Road
Dirt/Gravel

Vegetation
Vehicle

Grass/Sidewalk
Building

Figure 16: Trajectories of two robots navigating to the same goal. UGV 2 is given UGV 1’s experience
before beginning.

4.3 Communication

Along with ablating how the robot uses the terrain data, we also ablate how the robots share terrain
information with each other. To demonstrate the utility of this, we first perform a simple experiment. Two
robots are given the same map, and one is asked to navigate to a target position. Once it arrives there and
the other robot has gotten all of the other robot’s reachability scans, that other robot is given the same goal.
The results of this experiment can be seen in Fig. 16. Notably, there are several roadblocks on the map,
including one directly between the start and goal positions. The first robot must therefore explore several
possible routes which turn out to not be traversable before finding a route. The second robot, by contrast,
is able to use the first robot’s experience to much more quickly find the correct route. It does not trust
the first robot’s data without question and does perform some exploring on its own, but overall is far more
efficient by virtue of the other data. We compare the two trajectories in Table 1. Note that UGV 2 is more
than 3 times faster and takes nearly 3 times less distance to reach the same goal, since it is able to leverage
UGV 1’s experience instead of taking the time to rediscover the same things.

In addition to this toy experiment, we also run large scale experiments, adjusting how much terrain infor-
mation is shared. In one set of experiments we turn off communications about terrain completely, though



Figure 17: For varying communication, (Left): Distribution of the time goals are visited from mission start.
Goals not visited are given a visit time of 30 minutes for the purposes of visualization. (Right): Distributions
of the fraction of time robots spend actively navigating to a goal.

robots do still share information about their location and target goals for coordination. In another set the
robots share all of their reachability scans, so in effect each robot has the same total information, assuming
all robots are synchronized. Finally, we perform a set of experiments where the robots share a downsampled
set of reachability scans. Each robot checks to see if a new reachability scan is at least 2 meters away from
all prior scans. If it is, it is shared with other robots. This is the approach used in all other experiments,
including those in the real world. These results are shown in Fig. 17. Sharing traversability information
does appear to result in slightly increased team effectiveness, with robots visiting goals earlier and spending
more time navigating to a goal they will ultimately visit. However, sharing the full information has minimal
effect, and even slightly increases the average time goals are visited. Qualitatively, the differences are most
notable at the very beginning of the experiment. After all the robots have traveled a little bit, their inferred
traversability maps are fairly decent. Therefore, while sharing information helps the traversability estimation
to converge to something reasonable faster, after it has done so the effect is relatively small, at least for this
particular environment.

While it is possible that the small increase in average time goals are visited with full communication is due
to statistical variations, we did also observe qualitatively one reason it could happen. Sometimes, a robot
determines a path to be not traversable when it actually is. This is by design, since the system is tuned to
be conservative, as it is better in most cases to be cautious than risk damage. However, if all information
is shared and a robot makes a poor determination like this, then all other robots will more easily make
that same mistake. Downsampling helps to regularize other robots’ measurements, resulting in robots being
more willing to explore regions others have not been able to. In summary, sharing traversability information
is most valuable when robots are exploring the same region sequentially, and less helpful in simultaneous
operation.

We note as well that our system fails gracefully as communication degrades. In other words, the task can
be executed, even if no communication about terrain can occur at all. However, all of these experiments do
assume some level of communication. Our system is dependent on the UAV being able to communicate the
orthomap to the UGVs. If communication is so degraded, or the map so large, that this cannot happen, it will
fail, though we could instead provide a static map a priori. In addition, UGVs must be able to communicate
to deconflict goals. In the absence of communication, robots could simply pick goals at random, but this
would result in significant redundant goal visits. We do assume a basic level of communication to be available,
but anything above and beyond that, while helpful, is not strictly necessary.
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Figure 18: Satellite and semantic map of the Pennovation environment, with some robot’s-eye views of some
representative areas.

5 Real World Experiments

Finally, we perform experiments in the real world. We emphasize that these were not controlled environments.
Cars were frequently going by, construction was ongoing with roadblocks and construction equipment, and
there was a great deal of complicated structure. We test in two environments: Pennovation and the New
Bolton Center (NBC). In all cases, our team consisted of 3 Jackal UGVs and a single UAV. The Jackals were
equipped with an AMD Ryzen 3600 CPU, NVidia GTX 1650 GPU, Ouster OS1-64 LiDAR, and Realsense
D435i camera (only used for visualization). The UAV was a custom PX4-based robot (Liu et al., 2022b),
equipped with an Intel NUC i7-10710U, UBlox ZED-F9P GPS, and Open Vision Computer (OVC) (Quigley
et al., 2019) global shutter RGB camera (we did not use the stereo pair or IMU). All robots used 5 GHz
Rajant Breadcrumb DX2 mesh radios, with a Rajant ME4 basestation.

An overview of the Pennovation environment is shown in Fig. 18. This is a former factory refurbished to
accommodate a combination of labs, offices, and storage. It offers a relatively urban setting, though there
are some green spaces and trees. Particularly challenging regions include a cluttered patio with poles, tables,
and chairs, as well as parking lots which contain many curbs and ramps. During our experiments there was
ongoing road construction, resulting in roadblocks, construction equipment, and increased traffic due to the
main road being reduced to one lane. We perform 3 experiments here, with Penn1 starting the UAV and
UGVs in a different area of the map from Penn2 and Penn3, and therefore using a different exploration path
for the UAV. The basestation in all cases was positioned at the start location.

An overview of the NBC environment is shown in Fig. 19. For this experiment we did not fly the UAV in
real-time due to a hardware failure of the aerial robot. Instead, we fed the UGV a complete aerial map that
was built earlier by ASOOM at the beginning of their mission. Robots were able to communicate with each-
other and the basestation directly when in range, but not through the UAV in this case. We are therefore
unable to evaluate the UAV’s effect on this experiment, but nonetheless do still exercise the coordination
and traversability-sharing parts of the system. This environment is somewhat larger scale and much more
rural, consisting of roads between scattered buildings. There are some more significant elevation changes
here as well as many more trees and much more grass compared to Pennovation.

Table 2 summarizes our 4 experiments. We ended an experiment either when all robots returned back to
the start point with all identified goals visited, or after the UAV battery died and it appeared that not all
goals would be visited soon. Over all experiments, we visited 49/51 goals, or 96%. Both times a goal was
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Figure 19: Satellite and semantic map of the NBC environment, with some robot’s-eye views of some
representative areas.

Dataset Duration (min) Goals Visited/Total Goals Total Dist Travelled (km)
Penn1 28.5 10/11 3.9
Penn2 28.9 15/16 4.8
Penn3 28.0 16/16 5.0
NBC1 31.4 8/8 4.1

Table 2: Overview of the scale of 4 full-scale real-world experiments in terms of duration, goal count, and
distance travelled.

not reached the goal was in a similar location, which was in a parking lot very challenging to reach due to
construction on the access road to it. In Penn1 it was particularly difficult because the UAV misclassified
a portion of the road as building, causing the global planner to struggle. In Penn2 the same goal was
almost reached, but the goal timed out just before the robot got there. UGVs traveled a total of 17.8km
autonomously across all the UGVs and experiments, constituting a total of 4.2 UGV-hours. Each individual
UGV had on average 1.4 hours of autonomous operation and traveled 5.9km.

During our experiments, each robot was followed by a safety driver with the ability to take over manually
if need be. In Table 3 we analyse the robustness of the autonomy system by looking at the fraction of time
each robot was taken over manually. A large portion of these takeovers were due to dynamic obstacles, which
our planner was not designed to handle. Most often these obstacles were vehicles since our experiments were
conducted on active roads and parking lots. In addition, on occasion, the robots had to be prevented from
colliding with each other. Finally, there were several speed bumps in the Pennovation environment, and the
robots were manually driven over these to reduce mechanical wear and tear on the robots. Because dynamic
obstacles and speed bumps were cases our system was not designed to handle, we refer to the fraction of
time spent in manual mode, ignoring these cases, as filtered in Table 3.

Most of the time, robots spent only 1-3 % of the time in manual mode, corresponding to on the order of 5
takeovers per robot per experiment. These unfiltered takeovers were done to avoid collisions at the discretion
of the human safety driver. The most common cause was curbs, particularly when approached from above
with the curb as a negative obstacle. In this case, it was difficult for the robot to distinguish a curb from
a relatively mild downslope. Other challenging obstacles included poles and other small objects like chairs.
Due to the polar terrain analysis, the inflation radius of objects very close to the robot tends to be inaccurate,



Dataset UGV1 % manual
(raw/filtered) UGV2 % manual UGV3 % manual Overall % manual

Penn1 32.2/23.1 8.1/3.9 15.7/11.8 17.9/11.9
Penn2 5.9/3.0 3.8/0.07 3.2/0.36 4.5/1.3
Penn3 18.8/7.6 7.7/1.0 9.7/0.81 12.0/3.0
NBC1 3.9/1.8 3.4/3.2 3.7/0 3.7/1.8

Table 3: Analysis of the fraction of time robots spent being driven manually across different real-world
experiments.

Figure 20: Analysis of goal timings and robot activity throughout the real-world experiments.

sometimes causing the local planner to drive into nearby narrow obstacles. Penn1 had a significantly higher
number of takeovers due to the experiment starting next to a parking lot with many curbs and a patio with
many trees, poles, and chairs. Finally, on some rare occasions, the robots tried to drive under overhangs,
such as large trucks and construction equipment. While it is possible that they would have been able to
do so successfully, the operator intervened out of an abundance of caution. It is also worth noting that for
NBC1, one UGV tried to drive over a particularly steep rut next to the road, and while it made it over, the
impact caused the robot to shut down.

During all experiments, the communication system and UAV planner performed well. It was rare that UGVs
did not have any active goals to visit, as can be seen in Fig. 20 (c) and (d). We can also see in Fig. 20 (a)
that the majority of the goals were usually visited in the first half of the experiment, with the long tail at
the end being often due to particularly challenging or distant goals to visit.

We also analyse the learned terrain model from NBC1 over the course of the experiment in Fig. 21. We note
that as time goes on and the team experiences more and more of the map, the model becomes increasingly
good. Roads become more well-defined as highly traversable areas and buildings are defined as untraversable
areas. Grassy regions take a value somewhere in between: sometimes drivable, sometimes not. This suggests
that our modeling and analysis system is able to draw useful conclusions about the environment, even one
that is much more complex than the simulation.



Figure 21: The learned terrain model and experienced terrain for one of the UGVs over the course of the
NBC1 experiment.

6 Conclusion

In this paper, we developed a system for air-ground collaboration, where robots are able to use information
from each other to improve their own localization and planning in the absence of GPS for all robots except
the UAV. Semantics enabled robots diverse in sensing and mobility to represent the world around them and
communicate with one another in a common way, even with only intermittent communication. In addition,
semantics proved to be a strong predictor of traversability, enabling UGVs to use the aerial map as a predictor
of unvisited regions. We have also performed extensive ablation experiments in simulation, demonstrating the
contribution of each component of our system. Finally, we have performed real-world experiments across two
different challenging environments, urban and rural. These experiments have comprised nearly 18 kilometers
driven autonomously between the 3 UGVs, demonstrating the large-scale operation and robustness of our
system.

A key assumption in this work has also been that an aerial orthomap is representative of the environment.
This is true for most outdoor cases but fails to hold in many environments such as those with overhangs
or bridges. The single high-altitude UAV and multiple UGV architecture is not ideal for all applications.
Additionally, dynamic obstacles remain a significant challenge, and there is currently no mechanism for
robots to update previously mapped areas, or the UGVs to update the aerial map. These limitations provide
exciting avenues for future work.
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